Приймаються статті для публікації в № 2 (42)/2022
rn Міжнародного науково-практичного журналу "Товари і ринки" з технічних та економічних наук 

Статті

ADSORPTION PURIFICATION OF WATER FROM THE PUMP-ROOMS FROM OF IRON(III) IONS

Автор: sveta on . Posted in 2018_02(26)

 FREE FULL TEXT (PDF)
DOI: https://doi.org/10.31617/tr.knute.2018(26)04

UDC 543.3:626.22
 
GONCHAROVA Iryna,
PhD in Chemical Sciences///Chemistry, Associate Professor at the Department of Commodity Studies,
Safety and Quality Management of Kyiv National University of Trade and Economics
 
GOLOVKO Dmitriy,
PhD in Chemical Sciences///Chemistry, Associate Professor
at the Department of Technology of Nonorganic Substances and Ecology
of Ukrainian State University of Chemical Technology, Dnipro

ADSORPTION PURIFICATION OF WATER FROM THE PUMP-ROOMS FROM OF IRON(III) IONS

Background. Today, the population of Kiev has become a popular use in the everyday life of water from the pump-rooms. That is why physico-chemical analysis of water from natural sources is important.The basic indexes and methods for determining the quality of natural drinking water were analyzed [4; 6; 9]. A particular attention is paid to determining the safety of water from natural sources for the content of harmful impurities [7; 10; 11]. The classification of natural water purification methods is considered [12–15]. Methods of natural water purification based on the sorption processes are actual [18; 19].
The aim of work is the determination of optimal parameters for adsorption of water purification from excess of iron(III) ions after the study of quality and safety of the water from the pump-rooms of the Desnianskyi district of Kyiv by physico-chemical methods.
Material and methods. The objects of the study are samples of drinking water from the 18 pumps-rooms in Desnianskyi district of Kyiv.
The total hardness of water from the pump-rooms has been determined by the complexometric method, which is based on the interaction of Ca2+ and Mg2+ cations with trilon B in an ammoniac buffer solution (pH 9.5) with the formation of intra-complex compounds. The active acidity has been measured with the pH meter ULAB MP 511.
A spectrophotometric method which is based on the formation of a red-violet complex of Fe3+ ions with sulfosalicylic acid at pH 1.8–2.5 [17] was used to determine the content of iron(III) ions. The experiments were carried out on the spectrophotometer Specord 210 of the company Analytik Jena at a wave length of 510 nm.
Purification of water from the pump-rooms samples from Fe3+ ions was carried out by the adsorption method with activated carbon of the brand NORIT SA4 PAH, the Netherlands. Adsorption has been done from the model solutions of NH4Fe(SO4)2·12H2Oand samples of water from the pump-rooms. The weight of sorbent was 0.2 g, volume of solution – 50 ml, adsorption time – 10 minutes, temperature of the study – 20 °C.
Results. The quality of 18 samples of water from the pump-rooms in Desnianskyi district of Kyiv is determined. The total hardness, active acidity and iron(III) ions content are found. Adsorption purification of Fe3+ model solutions using activated carbon has been carried out. The Langmuir and the Freundlich isotherms have been constructed, the empirical constants are calculated in the Freundlich equation. Perspective of adsorption purification of water from the pump-rooms from surplus ions Fe3+ on activated carbon has been proven. The safety of water from the pump-rooms for the content of iron(III) ions has been determined after its purification  by adsorption method.
Conclusion. The results of physico-chemical study of the samples of water from the pump-rooms in Desnianskyi district of Kyiv showed compliance with the standard only in terms of active acidity and unsatisfactory water status in most indexes of total hardness and iron (III) ions. The different iron compounds containing in water from the pump-rooms and their influence on the human body are considered. The applied method of adsorption purification on activated carbon for the removal of surplus ions of Fe3+ from water from the pump-rooms may guarantee its safety by this index. The results of the study indicate an alternative to the use of this technology for other samples of drinking water.
 

Keywords: water from the pump-rooms, quality, safety, total hardness, active acidity, iron (III) ions content, adsorption purification. 

REFERENCES 

1. Kuryk M. V., Semchuk G. M., Skubchenko V. F. Problemy jakosti pytnoi' vody v Ukrai'ni. Mizhnar. nauk.-populjar. zhurn. "Fyzycheskaja эkologyja cheloveka". 2012. № 2. S. 45–53.
2. Berezhnov S. P. Pytna voda jak faktor nacional'noi' bezpeky. Zhurn. SES "Profilaktychna medycyna". 2006. № 4. S. 8–13.
3. Orlova N. Ja. Biohimija ta fiziologija harchuvannja : navch. posib. Kyi'v : Kyi'v. nac. torg.-ekon. un-t, 2008. 281 c.
4. Derzhavni sanitarni normy ta pravyla "Gigijenichni vymogy do vody pytnoi', pryznachenoi' dlja spozhyvannja ljudynoju" : DSanPiN 2.2.4-171-10. Kyi'v : Derzhspozhyvstandart Ukrai'ny, 2010. 25 s.
5. Taube P. R., Baranova A. G. Praktikum po himii vody : ucheb. posob. M. : Vyssh. shk., 1971. 128 s.
6. Reznikov A. A., Mulikovskaja E. P. , Sokolov I. Ju. Metody analiza prirodnyh vod. M. : Nedra, 1970. 487 s.
7. Kul'skij L. A., Nakorchevskaja V. F. Himija vody: Fiziko-himicheskie processy obrabotki prirodnyh i stochnyh vod. Kiїv : Vishha shk., 1983. 240 s.
8. Wardencki W., Biernacka P., Chmiel T., Dymerski T. Instrumental techniques used for assessment of food quality. Journal of Food Science. 2009. Vol. 3, N. 2. P. 273–279.
9. Soniassy R., Sandra P., Schlett C. Water analysis. Organic Micropollutans : tutorial. Germany : Hewlett Packard, 1994. 249 p.
10. Goncharova I. V. Feratna tehnologija ochyshhennja vody pryrodnyh dzherel vid nitrytiv. Mizhnar. nauk.-prakt. zhurn. "Tovary i rynky". 2015. № 1 (19). S. 50–59.
11. Popov M. Osoblyvosti zastosuvannja metodu hromato-masspektrometrii'. Zhurn. SES "Profilaktychna medycyna". 2012. № 4. S. 34–38.
12. Ivanchenko L. V., Kozhuhar V. Ja., Brem V. V. Himija i tehnologija vody : navch. posib. Odesa : Ekologija, 2017. 210 s.
13. Sorokina K. B. Tehnologija ochyshhennja vody vid rozchynenyh domishok: konspekt lekcij "Vodopostachannja i vodovidvedennja". Harkiv : HNAMG, 2007. 103 s.
14. Fiziko-himicheskie metody ochistki vody. Upravlenie vodnymi resursami ; pod red. I. M. Astrelina. Kiїv : Proekt "Vodnaja garmonija", 2015. 614 s.
15. Goncharova I. V., Jazvins'ka K. V. Vyznachennja jakosti ta bezpechnosti pytnoi' bjuvetnoi' vody. V Mizhnar. nauk.-prakt. konf. "Chysta voda. Fundamental'ni, prykladni ta promyslovi aspekty". Kyi'v : KPI, 2017. S. 101–102.
16. Pro pytnu vodu, pytne vodopostachannja ta vodovidvedennja : Zakon Ukrai'ny vid 18.05.2017 r. № 2047–VIII.
17. Koreman Ja. I. Praktikum po analiticheskoj himii. Voronezh : Izd-vo Voronezh. un-ta, 1989. 225 s.
18. Bsoul A. A., Zeatoun L., Abdelhay A., Chiha M. Adsorption of copper ions from water by different types of natural seed materials. Desalination and Water Treatment. 2014. Vol. 52. P. 5876–5882.
19. Puzij O. M., Pasal's'kyj B. K., Chykun N. Ju. Fosforovmisni vuglecevi sorbenty dlja ochystky vody. Mizhnar. nauk.-prakt. zhurn. "Tovary i rynky". 2014. № 1 (17). S. 159–166.
20. Berezkin V. I. Vvedenie v fizicheskuju adsorbciju i tehnologiju uglerodnyh adsorbentov. SPb. : Viktorija pljus, 2013. 409 s.
21. Gomelja M. D., Tverdohlib M. M. Doslidzhennja efektyvnosti ochyshhennja vody vid spoluk zaliza za dopomogoju modyfikovanyh fil'truval'nyh zavantazhen'. Sh.-Jevropejs'kyj zhurn. peredovyh tehnologij. 2016. T. 2, № 10 (80). S. 47–52.
22. Goncharuk V. V., Kavickaja A. A., Skil'skaja M. D. Nanofil'tracija v pit'evom vodosnabzhenii. Himija i tehnologija vody. 2011. T. 33, № 1. S. 63–94.
23. Javors'kyj V. T., Savchuk L. V., Rubaj O. I. Perspektyvni naprjamky ochyshhennja sverdlovynnyh vod vid spoluk Ferumu. Visn. NU "L'vivs'ka politehnika". Serija: Himija, tehnologija rechovyn ta i'h zastosuvannja. 2011. № 700. S. 50–54.