УВАГА! Нова платформа Міжнародного науково-практичного журналу «Товари і ринки».
Перейти за посиланням -  
http://journals.knute.edu.ua/commodities-and-markets/index

Статті

THE FERRATE TECHNOLOGY OF NATURAL WATERS TREATMENT

Автор: sveta on . Posted in 2020_02(34)

FREE FULL TEXT (PDF)

UDC 628.161:546.726   DOI: https://doi.org/10.31617/tr.knute.2020(34)06
Dmytro HOLOVKO
 
E-mail: Ця електронна адреса захищена від спам-ботів. вам потрібно увімкнути JavaScript, щоб побачити її.
ORCID:0000-0003-0379-083X
  Ph.D. of Chemical Sciences, Associate Professor
at the Department of Inorganic Substances Technology and Ecology,
Ukrainian State University of Chemical Technology
8, Gagarina ave., Dnipro, 49005, Ukraine
     
Iryna HONCHAROVA
 
E-mail: Ця електронна адреса захищена від спам-ботів. вам потрібно увімкнути JavaScript, щоб побачити її.
ORCID:0000-0001-7867-9154
  Ph.D. of Chemical Sciences, Associate Professor
at the Department of Commodity Science, Safety and Quality Management,
Kyiv National University of Trade and Economics
19, Kyoto str., Kyiv, 02156, Ukraine
     
Yaroslav BARASHOVETS
 
E-mail: Ця електронна адреса захищена від спам-ботів. вам потрібно увімкнути JavaScript, щоб побачити її.
ORCID:0000-0002-1618-2342
  CEO "Clean Water Systems" LLC


2/37, Pirogov str., Kyiv, 01030, Ukraine
 

 THE FERRATE TECHNOLOGY OF NATURAL WATERS TREATMENT

Background. Today it is important to use the resource of natural waters from artesian wells to provide the population with drinking water. The main methods of deironing water from natural sources were analyzed. Physical and chemical methods for removing of iron compounds from water have been considered. As an alternative to existing methods, water treatment by the ferrate technology is proposed, this relates to reagent methods of purification with universal action.
The aim of work is to prove the possibility of using ferrate technology to remove iron compounds from natural waters based on the study of thermodynamic and kinetic regularities of iron(II) reactions of different nature with potassium ferrate(VI), comparing it with adsorption purification by coal.
Materials and methods. The objects of the study are model solutions that con­tain soluble and insoluble simple salts, suspensions or colloidal forms of iron and samples of natural waters from pump-rooms of the Desnianskyi district of Kyiv, in which the concentration of iron exceeded the maximum permissible concentration.
The content of iron compounds before and after purification was determined by the spectrophotometric method (Specord 210 of Analytik Jena company) at a wavelength of 510 nm.
The removal of iron ions from model solutions and samples of pump-rooms water was performed by the ferrate technology and adsorption purification with activated carbon of the brand NORIT SA4 PAH (Netherlands).
The phase composition of the obtained precipitates was investigated by X-ray diffractometer DRON-2.0.
Results. Thermodynamic and kinetic regularities of the iron(II) reactions of differ­rent nature with potassium ferrate(VI) have been studied. The content of iron compounds in model solutions and samples of pump-rooms water of the Desnianskyi district of Kyiv was determined. Purification of experimental samples from iron ions by ferrate techno­logy in comparison with adsorption by coal has been carried out. The prospects of using a new ferrate technology for treatment of pump-rooms water from excess of iron ions are proved.
Conclusion. Thermodynamic and kinetic regularities of the interaction of iron(II) compounds of different nature with potassium ferrate have been studied. It was shown that chemical reactions of K2FeO4with solutions of FeSO4, FeCl2, Fe(NO3)2,as well as suspensions of Fe(OН)2, FeСO3and FeS proceed without kinetic complications and with high yield (~ 100 %). Instead of traditional oxidants in water treatment, it was proposed to use ferrates(VI) of alkaline metals.
For the first time, the fundamental possibility of using a new technology of natural waters purification to remove iron(II) compounds by ferrates(VI) was experi­mentally demonstrated.
Keywords: natural waters, quality, safety, iron compounds, potassium ferrate(VI), water deironing methods, ferrate technology.


REFERENCES
 
1.   Guidelines for drinking water quality. World Health Organization(2017). Geneva [in English].
2.    Goncharuk, V. V. (2014). Science about WaterKyiv: Akademperiodyka [in English].
3.   Gigijenichni vymogy do vody pytnoi’, pryznachenoi’ dlja spozhyvannja ljudynoju [Hygienic requirements for drinking water intended for human consumption]. (2010). Derzhavni sanitarni normy ta pravyla DSanPiN 2.2.4-171-10 – State sanitary norms and rules DSanPiN 2.2.4-171-10. Kyi’v: Derzhspozhyvstandart Ukrai’ny [in Ukrainian].
4.   Gomelja, M. D., Trus, I. M., & Grabitchenko, V. M. (2014). Vplyv aeracii’ ta elektrolizuna znyzhennja vmistu zaliza [The effect of aeration and electrolysis on the reduction of iron content]. Ekologichna bezpeka –  Ecological safety, 1 (17), 78-82 [in Ukrainian].
5.    Goncharuk, V. V. (2014). Drinking WaterPhysicsChemistry and Biology [in English].
6.   Fiziko-himicheskie metody ochistki vody. Upravlenie vodnymi resursami [Physico-chemical methods of water purification. Water resources management]. (2015). I. M. Astrelin (Ed.). Kiev: Proekt "Vodnaja garmonija" [in Russian].
7.   Tepong-Tsindé, R., Crane, R., Noubactep, C., Nassi, A., & Ruppert, H. (2015). Testing Metallic Iron Filtration Systems for Decentralized Water Treatment at Pilot Scale. Water(Vol. 7), 3, 868-897. doi: 10.3390/w7030868 [in English].
8.   Okoniewska, E., Lach, J., Kacprzak, M., & Neczaj, E. (2007). The removal of man­ga­nese, iron and ammonium nitrogen on impregnated activated carbon. Desalination. (Vol. 206), 1-3, 251-258. doi: 10.1016/j.desal.2006.04.055 [in English].
9.   Goncharova, I. V., & Golovko, D. A. (2018). Adsorbcijne ochyshhennja bjuvetnoi’ vodyvid joniv Ferumu(III) [Adsorption purification of pumping water from iron ions (III)]. Mizhnar. nauk.-prakt. zhurn. "Tovary i rynky" – International scientific-practical magazine. "Commodities and markets", 2 (26), 34-45 [in Ukrainian].
10.   Baba, A., Ibrahim, L., Adekola, F., Bale, R., Ghosh, M., Sheik, A. et al. (2014). Hydro­metallurgical Processing of Manganese Ores: A Review. Journal of Minerals and Materials Characterization and Engineering.(Vol. 2), 3, 230-247. doi: 10.4236/jmmce.2014.23028 [in English].
11.   Rosliza, R., Senin, H. B., Subhi, B. O., Wan Nik, W. B., & Azhar, M. S. (2007). Adsorption of iron from aqueous solutions using sawdust. AIP Conference Pro­ceedings. (Vol. 909), 1, 171. doi: 10.1063/1.2739847 [in English].
12.   Gomelja, M. D., & Tverdohlib, M. M. (2016). Doslidzhennja efektyvnosti ochysh­hennja vody vid spoluk zaliza za dopomogoju modyfikovanyh fil’truval’nyh zavan­tazhen’ [Investigation of the efficiency of water purification from iron compounds using modified filter loads]. Shidno-Jevropejs’kyj zhurnal peredovyh tehnologij – Eastern European Journal of Advanced Technologies(Vol. 2), 10 (80), 47-52. doi: 10.15587/1729-4061.2016.63608 [in Ukrainian].
13.   Tverdohlib, M. M., & Gomelja, M. D. (2017). Doslidzhennja efektyvnosti znezali­znennja vody v prysutnosti magnetytu ta modyfikovanoi’ magnetytom smoly [Study of the effectiveness of water deironing in the presence of magnetite and magnetite-modified resin]. Problemy vodopostachannja, vodovidvedennja ta gidravliky –  Problemsof water supply, drainage and hydraulics. Kyi’v: KNUBA. (Issue 28), (pp. 324-332) [in Ukrainian].
14.   Halysh, V., Sevastyanova, O., Riazanova, A., Pasalskiy, B., Budnyak, T., Lindström, M. et al. (2018). Walnut shells as a potential low-cost lignocellulosic sorbent for dyes and metalions. Cellulose. (Vol. 25), (pp. 4729-4742). doi: 10.1007/s10570-018-1896-y [in English].
15.   Guo, Y., Huang, T., Wen, G., & Cao, X.(2015). Comparisons of the film peeling from the composite oxides of quartz sand filters using ozone, hydrogen peroxide and chlorine dioxide. Journal of Environmental Sciences. (Vol. 1), 34, 20-27. doi: 10.1016/j.jes.2015.03.004 [in English].
16.   Yavorskiy, V. T., Kalymon, Ya. A., & Rubai, O. I. (2015). Kinetics of ferrum(II) ions oxidation by air oxygen in water in horizontal absorber with bucket-like dispersers. Chemistry and ChemTechnology(Vol. 9), 4,503-507. doi: 10.23939/chcht09.04.503 [in English].
17.   Javors’kyj, V. T., Kalymon, Ja. A., & Rubaj, O. I. (2015). Doslidzhennja vplyvu spoluk Ferumu(III) na proces okysnennja joniv Ferumu(II) kysnem povitrja [Investigation of the influence of iron (III) compounds on the process of oxidation of iron (II) ions by oxygen]. Shidno-Jevropejs’kyj zhurnal peredovyh tehnologij – Eastern European Journal of Advanced Technologies, 4/6 (76), 13-17. doi: 10.15587/1729-4061.2015.47460 [in Ukrainian].
18.   Kalashnikov, E. G., Arutjunova, I. Ju., & Smirnov, A. D. (2007). Issledovanie raz­lichnyh metodov dezodoracii vody pri vodopodgotovke [The study of various methods of deodorization of water during water treatment]. Vodosnabzhenie i sani­tarnaja tehnika – Water supply and sanitary equipment, 1, 17-24 [in Russian].
19.   Howe, K., Hand, D., Crittenden, J., Trussell, R., & Tchobanoglous, G. (2012). Principles of water treatmentCalifornia: John Wiley and Sons [in English].
20.   Ghosh, D., Solanki, H., Purkait, M. K., &  Hazard, J. (2008). Removal of Fe(II) from tap water by electrocoagulation technique. Mater. (Vol. 155), 1-2, 135-143. doi: 10.1016/j.jhazmat.2007.11.042 [in English].
21.   Gasanov, M. A., Gashimov, A. M., Aliev, V. A., & Gurbanov, K. B. (2005). Adsorb­cionnaja ochistka podzemnyh vod ot zheleza i marganca s ispol’zovaniem vozdejstvij jelektricheskih razrjadov [Adsorption purification of groundwater from iron and manganese using the effects of electric discharges]. Jelektronnaja obrabotka mate­rialov – Electronic material processing, 3, 73-76 [in Russian].
22.   Koreman, Ja. I. (1989). Praktikum po analiticheskoj himii [Workshop on Analytical Chemistry]. Voronezh: izdatel’stvo Voronezhskogo universiteta [in Russian].
23.   Sharma, V. K., Zboril, R., & Varma, R. S. (2015). Ferrates: greener oxidants with multimodal action in water treatment technologies. Accounts of Chemical Research. (Vol. 48), 2, 182-191. doi: doi.org/10.1021/ar5004219 [in English].
24.   Carr, J. D.,Goncharova, I. V., Golovko, D. A., McLaughlin, C. W., Golovko, I. D., & Erickson, J. E. (2018). Study of the oxidation kinetics of nitrite ions by potassium ferrate(VI). Eastern-European Journal of Enterprise Technologies(Vol. 3), 6(93)18-25. doi: 10.15587/1729-4061.2018.133460 [in English].
25.   Talaiekhozani, A., Talaei, M.R., & Rezania, S. (2017). An overview on production and application of ferrate(VI) for chemical oxidation, coagulation and disinfection of water and wastewater. Journal of Environmental Chemical Engineering. (Vol. 5), 2, 1828-1842. doi: 10.1016/j.jece.2017.03.025 [in English].
26.   Golovko, D. A.,Sharma, V. K., Suprunovich, V. I., Pavlova, O. V., Golovko, I. D., Bouzek, K., Zboril, R. (2011). A simple potentiometric titration method to determine concentration of ferrate(VI) in strong alkaline solutions. Analytical Letters. (Vol. 44), 71333-1340. doi: 10.1080/00032719.2010.511748 [in English].
27.   Golovko, D. A., & Goncharova, I. V. (2019). Potassiumferrate(VI) – anewreagentforspecialwatertreatment. Proceedings of the VІ Mizhnarodna naukovo-praktychna konferencija "Chysta voda. Fundamental’ni, prykladni ta promyslovi aspekty" "Chysta voda 2019" – Proceedings of the VI International Scientific and Practical Conference "Pure Water. Fundamental, applied and industrial aspects" "Pure Water 2019". Kyi’v: KPI [in English].
28.   Golovko, D. A., Goncharova, I. V., & Barashovets, Ya. O. (2020). Innovative ferrate technologies for removal of iron from natural waters. Proceedings of the III Mizhna­rodna naukovo-praktychna internet-konferencija "Pidpryjemnyctvo, torgivlja, marke­tyng: strategii’, tehnologii’ ta innovacii’" – Proceedings of the III International Scien­tific and Practical Internet Conference "Entrepreneurship, Trade, Marketing: Strategies, Technologies and Innovations". Kyi’v: Kyi’vs’kyj nacional’nyj torgovel’no-ekono­michnyj universytet [in English].